Blogue IV. Ecuaciones Diferenciales de primer orden
Tema 4 Métodos de Aproximacion Numeérica

Ejercicios

resueltos

IV.4-1 Usar el método de Euler para aproximar la solucién del P.V.I. dado en los puntos
x = 0.1, 0.2, 0.3, 0.4, 0.5 usando tamafno de paso h = 0.1.

d d
a) dz Y b) dx
y(0) =4 y(0)=1
Solucion

Yoir = Yo +h-f(2,,0,)

dy_ =z

a) dx (0
y(0)=4
z, =0
z, = 0,1
z, = 0,2
z, = 0,3
z, =04
z; = 0,5
dy

b) dx Y
y(0)=1
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Y =Y +h'f<xoay0):4+071'[_1]

0,1

y

Yo :y1+h'f($1ay1):4+071'[_;

Yo = Yo + h- f(20,9,) = 3,9975 + 0,1-

Yy =y +h- f(z,y,) = 3,9925+0,1-

Ys = Yy —|—h-f(:z4,y4) = 3’2411+071'[_
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z, =0 Yy, =1

zr, =0,1 Y=y, +h fz,y)=1+01-(0+1)=11

z, = 0,2 Yo =y +h- fz,y)=1,1+01-(0,1+11) =122

z, = 0,3 Yy = Yo + - f(25,9,) = 1,22+ 0,1-(0,2 + 1,22) = 1,362

z, = 0,4 Y, =ys +he f(z,y,) =1,36240,1-(0,3 +1,362) = 1,5282

z, = 0,5 Ys =y, +h- f(z,0,)=1,5282+0,1- (0,4 +1,5282) = 1,72102

IV.4-2 Usar el método de Euler para aproximar la solucién del P.V.I. dado en x = 1.
Tomar diferentes pasos, h = 1, 0.5, 0.25.

dy _ 1+ zsen (zy)
dx
y(0)=0
Solucion
h=1
2, =0 Yy =0
x, =1 yl:yo+h-f(x0,y0):0+1-(1+0):1
h=0.5
z, =0 Y, =0
z, =0,5 Y=Yy, +h-f(z,y,)=0+0,5-(140)=0,5
z, =1
Y%=y +h-f(z,5)=05+05(1+0,5-5en(0,5-0,5)) = 1,06185
h=0.25
2, =0 Yy =0
z, = 0,25 v =1y, +h-f(z,y,)=0+0,25-(140)=0,25
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z, = 0,5
vy =y +h- f(z,y,)=0,25+0,25-(140,25-sen(0,25-0,25)) = 0,503904

x, = 0,75
Yy = Yy + h- f(2y,9,) = 0,503904 + 0,25 (1 + 0,5 - sen (0,5 - 0,503904)) = 0,785066

z, =1
Y, = Y5 + h f(zy,9;) = 0,785066 + 0,25 (1+ 0,75 sen (0,75 0,785066)) = 1,1392

IV.4-3 Usar el método de E uler mejorado con tamafio de paso h = 0.1 para aproximar
la solucién del P.V.I. dado en los puntos x = 1.1, 1.2, 1.3, 1.4, 1.5.
dy o
dz
y(1) =

Solucion

Yur = U, + g f(@v,) + £ (2, + by, + bf (2,,9,))]

z, =1 Yy, =0
z, =11 y, =0+0,05-[1+1,1—0.1°| = 0.1045
z, = 1,2 y, = 0,1045 4+ 0,05 - [1,1 —(0,1045)* + f(1,2; 0,213408)]

y, = 0,1045 + 0,05 -[1,1— (0,1045)" + 1,2 — (0,213408)" | = 0,216677

2, =13 ys = 0,216677 + 0,05 -[1,2 — (0,216677)" + £(1,3;0,331982)]
ys = 0,216677 + 0,05 [1,2 — (0,216677)° + 1,3 — (0,331982)° | = 0,333819

z, =14 y, = 0,333819 + 0,05 -[1,3 — (0,333819)° + £ (1,4;0,452675)|
y, = 0,333819 + 0,05-[1,3 — (0,333819)" + 1,4 — (0,452675)°| = 0,453002

z, =15 y, = 0,453002 + 0,05 - [1,4 — (0,453002)° + f(1,5:0,46495)|
y, = 0,453002 + 0,05 [1,4 — (0,453002)" + 1,5 — (0,46495)" | = 0,465395
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IV.4-4 Usar el algoritmo de Euler mejorado para aproximar la solucién del P.V.I. dado en
x = 1 con tamafio de paso 0.25.

Solucion

Yot = Y + g £ (2,09,) + F(, + by, + bt (2,,0,))]

zy =0 Yo =0

=0 +% [1+ £(0,25,0,25)] = 0,125 [1+1 - 0,25 — (0,25)"] = 0,216797

z, = 0,5 Y, = 0,216797 4 ﬁ [1 —0,216797 — 0, 216797° + f(O 5;0 41005)]

Yy, = 0,216797 4 % 1-0,216797 — 0,2167973 +1-0,41005 — 0,410053] = 0.378549
0,25 3

z, = 0,75 = 0,378549 + T 1—0,378549 — 0,378549" + f(0,75;0 52035)]

y; = 0,378549 + % 1—0,378549 — 0,378549" +1 — 0,52035 — 0,52035 ] = 0,491794
0,25 3

z, =1 =0,491794 + T 1—0,491794 — 0,491794° + f(1;0,589109)]

y, = 0,491794 + % 1-0,491794 — 0,491794* + 1 — 0,589109 — 0,589109° | = 0,566257

IV.4-5 Determinar las férmulas recursivas del método de Taylor de orden 2 para el P.V.1.

dy _ cos(z + y)
dx
y(0)=m=

Solucion
2 h »

h
yn+1 = yn +h.f('xrl’yn)+§.Jg(’1’.n7yn)+"'+?.];(xn,’yn)

Matematicas. Primer curso del Grado de CTA Bloque 1V. E. D. de primer orden. Tema 4. Métodos de Aproximacion Numérica
Ana Isabel Allueva Pinilla —José Luis Alejandre Marco MATEMATICA APLICADA - Universidad de Zaragoza



f(z,,y,) =y" @ = (cos(z + y))/ =—(1+y)sen(z+y)=
= —(1+ cos(z + y))sen(z +y) = —sen(z + y) — cos(z + y)sen (z + y)

2

Vo =, + B con(o, +1,) g (1+ os(o, + 3, ))sen (v, +,)

IV.4-6 Usar el método de Taylor de orden 2 con h = 0.25 para aproximar la solucion
del P.V.I. dado en x = 1.

dy
dx Y
y(0)=1
Comparar esta aproximacion con la solucion verdadera, y = z + ¢, evaluada en
x = 1.
Solucion

2

h
Y1 = Yn +hf(fvn,yn)—|—§f;(:pn,yn)

f2<xnﬂyn) = y//(l’) == (1‘+1—y)/ = <1—y/) — _x_|_y

z, =0 Yy, =1
h?

z, = 0,25 Y=y, +h-f(z,y,) +§~ f (zy, ) = 1,03125
h2

z, =0,5 y2:y1+h'f($1ay1>+§']62(x1ay1):1711035
h2

z, = 0,75 y3:y2+h-f(x2,y2)+§-f2(x2,y2):1,22684
h2

:L‘4:1 Yo = Y5 +h-f(x3,y3)+a'ﬁ(a:3,y3):1,37253

y==c +e ' = y(l) =14e'= 1,36788
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IV.4-/ Usar el método de Runge-Kutta de cuarto orden con h = 0.25 para aproximar la
solucion del P.V.I. dado en x = 1:

x = 1.
Solucion
k = h-f(xn,yn)
xn+1:xn+h kZthxn+gﬂyn+%]
1
yn+1 = yn +€<k1 +2k2 +2k3 +k4) k3 = hf xn +g,yn +%]
k4 = h f(xn, + h7yn + k?))
n=0
2, =0 Yy =1
n=1
1
= 0,25 b= v+ - (B 2k + 2k, + ) = —0,206875
=h-f (%;Z/o)
h
s =h-f [:U h,y() ]:—1 3125
y = he f(z) + hyy, + k) = —1,65625
n=2
1
z, = 0,5 yQ:y1+g~(kl+2k2+2k3+k4):—2,434692
k= h-f(z,y)=—1,6484375
ky=h-f|z, + h,y1 + 5 ] —2,06055
2 2
k,=h-flz +h,y1+k ]:—21636
2 2
ky = h- f(z, 4 hy + k)= —2,7302
n=3
z, = 0,75 y3:y2—|—%-(k1+2k2+2k3+k4):—5,95875
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k= h- f(z,y,)=—271735

kQ:h-fx2+;L,y2+l;] —3,39668
k3:h~f[ +h,y2+k]:—35665
2 2
k,=h-f(z, +hy, + k) = —4,5006
n=4
r, =1 L =Us é(k + 2k, + 2k, +k;) —11,7679

= h- f(2,,y;) = —4,47938

h-f

Y
Ly 7y3

/(

h- [a: ;‘,3 ] —5,5992
[ 4R ]:—58792
f (z,

h-f

+h y, + k) = —7,4189

y=3—2" =y(1)=3—2¢" =—11,7781

IV.4-8 Usar el método de Runge-Kutta de cuarto orden con h = 0.25 para aproximar la
solucion del P.V.I. dado en x = 1.
dy

dx Y
y(0)=1
Solucion
kl = h f(xn7yn)
h k
xn+1:xn+h kQth[wn—}_ann_{—El]
1
Vo = Yo+ (R4 20 420+ y) k3=h-f[xn+ﬁ,yn+k_2]
2 2
k4 = hf(',l:n +h7yn +k3)
n=0
z, =0 Y, =1
n=1
1
z, = 0,25 yl:yo—l—g-(kl—|—2k2—|—2k3+k4):1,0288
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=h- (xoayo)
h
ky,=h-f|z, 2,y0 —|=0,03125
h {
=h-f|z, ,yo =0,02734
k, =h-f(z, +h y0+k)—0,05566
n=2
z, = 0,5 Y, =y, + (k: + 2k, + 2k, + k,) = 1,10654
k,=nh- f(a:l,yl) = 0,05529
[:z: Z,yl —] = 0,07963
h |
L =h-f ( +h y1+k)—0,09864
n=3
z, = 0,75 Ys = Yy é (k: + 2k, + 2k, —|—k)—1,22238
=h-f (:cQ,yQ) = 0,098364
h
k,=h- [w 2,@/2 ]—0117318
. |
k,=h- [fv — Yy T ]—0114949
L =h-f(z, +h Yy, + ky) = 0,122126
n=4
1
z, =1 y4:y3—I—g'(kl—|—2k2+2/<:3—|—k4):1,36789
k= h- f(z,,y,)=0,1319
ky,=h- f[:c3 ;L,yg ]—014666
. !
k,=h- [ ,y3 —]—014482
L =h-f ( +h Yy + Ky )—0,15819
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